Top-of-Atmosphere Flux Retrievals from CERES

Using Artificial Neural Networks

KONSTANTIN LOUKACHINE !
Science Applications International Corporation, Hampton, Virginia

NoORrRMAN G. LOEB
Center for Atmospheric Sciences, Hampton University, Hampton, Virginia

In print at
Remote Sensing of Environment
August 2004

L Corresponding Author Address: Dr. K. Loukachine, SAIC, One Enterprise Parkway, Suite 300,
Hampton, VA 23666, U.S.A., e-mail: k.loukachine@larc.nasa.gov



1. Introduction

Long-term studies of the Earth’s radiation budget play an important role in understanding
our planet, the impact of human activity on its climate, and detecting global climate change.
As a part of the National Aeronautics and Space Administration (NASA) Earth-Observing
System (EOS), The Clouds and the Earth’s Radiant Energy System (CERES) is designed
to provide a precise record of top-of-atmosphere (TOA) reflected solar and emitted thermal
radiative flux values, Wielicki et al. (1996). CERES measures shortwave (SW), longwave
(LW), and window (WN) radiances over 20-km footprint (at nadir). To convert the measured
radiances to TOA fluxes, Angular Distribution Models (ADMs) that depend on viewing ge-
ometry, surface type and atmospheric conditions are used. An ADM is defined as a collection
of anisotropic correction factors for a specific scene type and depends explicitly on viewing
geometry. Detailed scene identification (ID) over a CERES field-of-view is based on coincident
retrievals from the Moderate-resolution Imaging Spectroradiometer (MODIS) measurements,
Minnis et al. (2003). For CERES field-of-views with sufficient imager information, the ADMs
are developed empirically, Loeb et al. (2004), and they are explicitly dependent on imager-
derived cloud properties. However, the CERES/ Terra dataset includes about 5.6% of CERES
footprints with missing imager information or insufficient MODIS data for a reliable scene
ID. The frequency of occurrence of these fields-of-view depends on imager viewing geometry,
geographic location, and on certain cloud conditions, Minnis et al. (1999) and Minnis et al.
(2003), and can reach up to 50% of data locally or for a specific scene type. In order to
avoid any systematic bias in radiative budget data, it is very important to provide accurate
TOA flux values for such footprints. This requires ADMs that can be used with the CERES
measurements alone.

Empirical ADMs based only on radiometer geometry and broadband radiance measure-
ments were developed for the Earth Radiation Budget Experiment (ERBE), Barkstrom (1984).
These models are currently used for producing the ERBE-like datasets from the CERES mea-
surements to provide a long-term record of radiation budget data. A method based on combi-
nation of theoretical simulation, narrow- and broadband radiance measurements was proposed
by Stubenrauch et al. (1993) for obtaining LW anisotropic correction factors. However, as the
authors have shown, the errors of the method are large due to spectral width of the CERES
window channel. The first attempt at using ANN for both SW and LW TOA flux retrievals,
Loukachine and Loeb (2003), relied on a multi-layer perceptron technique for TOA flux es-
timation from CERES measurements on the Tropical Rainfall Measuring Mission (TRMM)
satellite. The ANN-based ADMs were developed for tropical regions using eight months of
available data for neural network training. That study demonstrated that the CERES/TRMM
ANN-based models are more accurate than ERBE ADMs for mean regional TOA flux esti-
mation. It was also shown that both SW and LW ANN-derived fluxes have smaller residual
dependence on CERES viewing zenith angle then the ERBE-like fluxes.

In this paper, we further develop the application of ANN simulation to the TOA radia-
tive flux retrievals from CERES/Terra measurements in the absence of coincident imager
information. A global set of SW, LW, and WN ANN-based ADMs is developed for ten sur-



face types using a complete year of CERES/ Terra data. A partially-connected feed-forward
error-backpropagation network simulation is applied in combination with compact low-noise
training sets for the ANN performance optimization. To demonstrate the accuracy of the
method we compare the ANN-derived results with the original CERES/ Terra TOA flux val-
ues. Because of similarity in results for LW and WN we discuss results only for SW and LW
TOA fluxes.

2. Observations

Two identical instruments, CERES Flight Model 1 (FM-1) and 2 (FM-2), were launched
into a descending sun-synchronous orbit on the Terra satellite in December 1999. Each in-
strument has a spatial resolution of approximately 20 km at nadir (equivalent diameter) and
scans the Earth over the full range of viewing zenith angle (VZA). CERES operates in three
scanning modes - across the satellite ground track (cross-track), along the direction of the
satellite ground track (along-track), and in a Rotating Azimuth Plane (RAP). In RAP mode,
the radiometers scan in elevation as they rotate in azimuth, thus acquiring radiance measure-
ment from a wide range of viewing angles. One CERES instrument scans in cross-track mode
while the other is in RAP or along-track mode. The instrument operating in RAP scanning
mode takes two days of along-track data every month.

For this study we use the CERES/ Terra FM-1 and FM-2 Single Scanner Footprint (SSF)
dataset for 2001. The SSF product contains coincident CERES and MODIS measurements.
The MODIS scans in a cross-track mode up to 63° in VZA. Only CERES footprints that at
least partially lie in the MODIS swath are retained in the SSF product. Therefore, the CERES
footprints with VZA larger than 63° appear only when CERES is in the RAP or along-track
scan modes.

Total fraction A, of area with unknown cloud properties over CERES footprint is deter-
mined by combining the imager coverage A;,, and the fraction A, .4 of the cloudy area lacking
cloud properties as follows:

Aunk = (1 - Azm) + Azm(l - Acl'r)Ancld ) (1)

where the first term provides the fraction of the footprint with no imager coverage, and
the second term is the fraction of the footprint from the cloudy area with unknown cloud
properties. The original CERES/ Terra ADMs are developed and applied to the footprints
with Ayne < 35%, Loeb et al. (2003). Approximately 5.6% of CERES footprints in the 2001
dataset lack sufficient imager information, A,,; > 35%, to provide scene identification. The
regional frequency of these CERES footprints is shown in Fig. 1 for CERES/ Terra data from
2001, with CERES in RAP scanning mode. The frequency is a strong function of the imager
viewing geometry, surface and cloud conditions, and geography. Regionally, it can reach up
to 50% over fresh snow (North Canada), sea-ice (sea of Okhotsk and Antarctica ice-shelf),
mountainous (Tibet) or coastal regions (Arabian peninsula). Difference in surface conditions
creates a large difference in sampling, as it is in the case of Greenland (permanent snow) and
Artic ocean (sea ice). Footprints with thin high cloud layers also frequently lack imager cloud
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property coverage due to rejection by the imager cloud algorithms, Minnis et al. (1999). When
CERES radiometers are in the cross-track mode, footprints on the edges of the swath often
lack sufficient imager pixel coverage to provide scene identification over entire field-of-view.

In addition to CERES and MODIS, the SSF dataset also includes meteorological data
based on the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing
System DAS (GEOS-DAS V4.0.3) product, DAO (1996). The GMAO provides parameters
such as surface skin temperature, precipitable water, and column averaged relative humidity.

A comprehensive description of all parameters appearing in CERES/ Terra SSF datasets is
provided in the CERES Collection Guide, Geier et al. (2003).

3. ANN Method and Training Results

To obtain the ANN-derived CERES TOA fluxes, we use CERES data with coincident
MODIS information to train neural networks to reproduce the original scene-dependent,
CERES/ Terra ADM as five-dimensional function of variables, v;...v5. This set of variables is
available with the CERES measurement alone: viewing zenith angle (VZA), relative azimuth
(RAZ), LW broadband radiance (LWR), solar zenith angle (SZA), SW broadband radiance
(SWR). The ANN-based ADM is then applied to convert CERES broadband radiances into
TOA fluxes using the following

Tl

RANN(Ul...U5) ’

Fanny = (2)
where Fuypy is the ANN-derived TOA flux, I and Rsyn(v;...v5) are the measured broadband
radiance and ANN-based ADM, respectively. To reproduce the original CERES/ Terra ADMs
we use feed-forward error-back-propagation multi-layer ANN simulation technique. This type
of neural network is a well-known tool for creating highly non-linear, multi-dimensional, con-
tinuous transfer functions, Hagan et al. (1996) and Aires et al. (2001). For ANN training we
use the method described in Loukachine and Loeb (2003) with a few modifications, which we
discuss below.

3.1. ANN Layout

The ANN layout is shown in Fig. 2. For the shortwave ADMs the ANN input variables are:
CERES VZA, RAZ, LWR, SZA, and SWR, as shown in Fig. 2. The first and second hidden
neuron layers, L' and L2, consist of neurons with a tangent sigmoid activation function, and
the output neuron, L3, has a linear activation function. In order to avoid operations with large
numbers, all inputs to the network are normalized to the maximum allowable value for each
variable: 300 Wm~2sr~! for SWR, 150 Wm™2sr~! for LWR, 90° for both SZA and VZA, and
180° for RAZ . The upper limits for SWR and LWR define the variable range with sufficient
CERES/ Terra SSF data for network training, and the ANN is not to be used beyond these
limits. The normalization process is indicated by letter NV in Fig. 2. Neurons in the first hidden

'Normalization factor for precipitable water, used in LW and WN ANNs, is 10 cm. Normalization factor
for SZA is 180° for night data.



neuron layer, L!, are divided into two groups, each dedicated to specific variables. The reason
for this partial connectivity is to separate weakly and strongly correlated input parameters.
The first group of four neurons is connected to only three input variables: viewing zenith
angle, relative azimuth angle, and longwave radiance. The second group of three neurons is
connected to the other two variables for which the SW flux is strongly dependent: shortwave
radiance and solar zenith angle. The LW day- and night-time use the same structure for the
first hidden neuron layer. The second hidden neuron layer, L?, consists of 11 neurons for SW
and 9 neurons for LW ANNs. They are uniformly connected to all the neurons in the first
and third neuron layers. Input variables for SW, LW day- and night-time ANNs are shown
in Table 1. We note that in the case of the LW networks, in addition to information provided
by CERES, we use precipitable water (PW), provided by GMAOQO, as the ANN input variable.

3.2. Training Sets

Generally, neural network simulation involves three steps: (i) definition of the training
sets; (ii) neural network training; and (iii) application of the network to data of interest. To
create the ANN training sets, we use the entire year of 2001 SSF data with CERES in RAP
scanning mode. Only CERES footprints with sufficient MODIS information, A, < 35%, are
considered.

Although computation time limits the size of a training set, the training set must be large
enough to represent the complexity of the data in order to allow the ANN function to generalize
well, Bose and Liang (1996). First, we define ten surface scene types based on the International
Geosphere Biosphere Programme (IGBP) surface map, Geier et al. (2003), as shown in Table
2. For every surface scene type, the CERES SSF data is then independently stratified by
five input variables. The variables, number of bins and bin-widths for SW, LW day- and
night-time training sets are shown in Table 1. For each five-dimensional configuration we
compute the mean and standard deviation (STD) of the original CERES/ Terra ADM values,
and the mean values of each input variable. These are the constituents of the ANN training
sets. By requiring a minimum number of CERES footprints per configuration, we reduce
the data to compact sets of approximately 15,000 configurations for land scene types, and
25,000 configurations for the Water Bodies scene type. Because of differences in sampling
rate, these numbers vary from one scene type to another for SW and LW training sets. By
applying a constant statistic threshold to all configurations within a training set we assure
representation of high density data, and therefore gopod ANN training results for the bulk of
the data. Further, to reduce data noise we set an upper-limit on the STD value of the ADM
distribution within a training configuration. The exclusion of noisy configurations from the
training sets is illustrated in Fig. 3 for SW training sets: Water Bodies (Fig. 3a) and Dark
Desert (Fig. 3b) as an example for a land scene. The STD(ADM) upper-limit for SW training
sets is 8.0% for all scene types. The STD(ADM) upper-limits for LW day- and night-time
training sets are 2.0% and 3.0%, respectively. The noisy data configurations, with STD(ADM)
exceeding the limits, are archived during this procedure. They amount to approximately 2-3%
of the total number for the land, snow and ice, and about 10% for Water Bodies training sets.
Because of sun glint over water surface, large number of the noisy configurations for the Water
Bodies SW training set come from the CERES viewing geometry with small glint angles (Fig.
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3a). For the land scene types distribution of the noisy configurations is relatively uniform in
all variables. Thus, we have thirty compact low-noise ANN training sets for ten scene types
for SW, LW day- and night-time CERES/ Terra original ADMs.

3.3. ANN Training

Having constructed the training sets, we then train the ANNs using the Generalized Delta
rule with a varying learning rate and a constant momentum, Hagan et al. (1996). To ensure
smooth and effective ANN learning we define an error index over the entire training set as:

B(k) =3 [ti—al(k)]* (3)

where N is the number of configurations in a training set, t; is the ADM target value (mean
ADM value in a training configuration), and a3(k) is the ANN output at iteration k. Thus, the
error index is the sum of the square of errors from all training configurations, and is computed
at the end of every learning iteration. If the error index decreases, a training iteration ends and
the ANN connection weight and neuron bias values are updated as described in Loukachine
and Loeb (2003). As a compromise between computation time and desirable accuracy, we used
10,000 iterations for all land, snow and ice ANN scene types. Because of its larger training set
size, we used 15,000 iterations for the Water Bodies ANN scene type. The training process
for Bright Desert SW ANN is illustrated in Fig. 4. With each iteration the error index
monotonically decreases as shown in Fig. 4a. At the end of training, the ANN reproduces
ADM values very closely for all configurations of the training set. A frequency distribution of
the relative difference between ANN-derived and training set ADMs, (Rayny — Rsger)/Rser,
is shown in Fig. 4b. The mean and STD values of this distribution for the entire training set
are selected as quantitative estimates of training success. Training results for SW, LW day-
and night-time for all ANN scene types are shown in Table 2. The mean deviation from the
target ADM values is very small for all ANN scene types. The average STD is approximately
3.5% for SW, and 1% for LW day- and night-time ANNs.

When the training is complete, the ANN connection weights and neuron biases are frozen,
and the networks represented by the transfer functions, Rsnn(v1...v5) (Equation 1), are ready
to be applied. To reduce overall error in ANN-derived fluxes the archived list of noisy config-
urations for every ANN scene type is used to reject noisy data.

4. Validation Results

4.1. ANN-derived Mean TOA flux

To validate ANN-based models we compare the ANN-derived and original CERES/ Terra
SSF fluxes. For this purpose we use CERES/ Terra SSF data from 2001, the footprints with
both the original CERES/ Terra and ANN-based ADMs defined.



The global mean (bias) of the difference between the ANN-derived and original CERES/ Terra
TOA fluxes is shown in Table 3 for each ANN scene type. For SW, most of the ANN scene
types have a small negative bias. Only Deciduous Forest and Dark Desert scene types have
bias values that that exceed 0.5%. For LW, the biases are also small for all scene types except
Sea Ice at night and Snow and Sea Ice for both day and night. For these scene types the
bias is about 0.7%. Since the overall sampling is dominated by ocean, the global bias value is
within 0.2% for both SW and LW TOA fluxes.

Figure 5 shows regional differences between mean all-sky ANN-derived and original CERES/ Terra

fluxes for SW (Fig. 5a), LW day-time (Fig. 5b) and LW night-time (Fig. 5c) data. Locally,
the maximum differences are within 10 Wm ™2 and 3 Wm 2 for SW and LW, respectively.
While the global bias is relatively small the ANN shows significant errors over snow and sea
ice surfaces, particularly in the polar regions where the fraction of CERES footprints without
imager-based scene ID is large (see Fig. 1). For LW at night, the ANN function also shows
larger errors over West Tropical Pacific ocean region, where precipitable water is large. We
believe, improvements in ANN performance in these regions can be achieved by artificially
increasing the density of configurations with large mean values of precipitable water in the
Water Bodies training set.

The expected minimum STD value of the difference between the ANN-derived and original
CERES/ Terra TOA fluxes for a scene type, ST D1y, can be estimated as:

STDyy =/ STD(ADM)? + STD?. |, (4)

where STD(ADM) is the STD(ADM) average over a training set, and represents the intrinsic
uncertainty of the target ADMs. The ST Dy is the STD of the relative difference between
ANN-based and target ADMs after the training is complete (see Table 2). The ST D,y and
STD of the difference between the ANN-derived and original CERES/ Terra TOA fluxes for
2001 data are shown in Table 3. The ST D,y and STD values agree within less than one
per cent for SW and a few tenth of a per cent for LW for all ANN scene types. This result is
very important as it illustrates the motivation for our approach used to create training sets:
average of the original CERES/ Terra ADMs using a large dataset and calculate STD(ADM)
for every training configuration. Using these together with ST Dr, we are able estimate the
errors in the method and have a reliable consistency control.

The comparison of the all-sky mean SW TOA flux stratified by solar zenith angle is shown
in Fig. 6a. The ANN-based fluxes reproduce the original CERES/ Terra fluxes on average
to within 2 Wm™2 for all SZA values except for SZA < 10°, where the difference is about
15 Wm 2. This small SZA range data is poorly sampled because Terra is in a 10:30 a.m.
sun-synchronous orbit, and because of SW training configuration rejection due to large noise
in the original CERES/ Terra ADMs (sun glint over ocean, see Fig. 3a). The situation is
very similar in LW case. The comparison of the all-sky mean LW TOA fluxes stratified by
precipitable water is shown in Fig. 7a and Fig. 8a for day and night CERES data, respectively.
The ANN-derived TOA fluxes reproduce the original ADM fluxes within 2 Wm~2 for all PW



values except PW > 8 cm, where the sampling is poor. For PW > 8 cm, the difference is
approximately 3 Wm~2 and 4 Wm~=2 for LW day- and night-time, respectively. To reduce
errors when data sampling is poor, the number of these particular data configurations should
be artificially increased in the training sets by reducing the statistical threshold.

4.2. Instantaneous Flux Consistency

From its definition, TOA flux should not depend on satellite viewing geometry. Thus, a
difference in instantaneous TOA flux values at different viewing angles over the same scene
can be used for estimating instantaneous flux consistency. We note, that consistency is not a
guarantee of absolute accuracy since since the true flux from the scene is unknown. However,

in this study we are interested in a relative comparison between the original CERES/ Terra
SSF and ANN-derived TOA flux errors.

Forty days of along-track and coincident cross-track CERES/ Terra SSF data from 2001
and 2002 are used to estimate instantaneous TOA flux consistency. The Earth’s surface is
divided into regions of 1° longitude and 0.02 in sin(latitude). In the cross-track scanning mode,
CERES and MODIS view a footprint at the same angle, and so that a linear regression from
instantaneous MODIS narrowband to CERES broadband radiance can be derived for every
region. We retain only the regressions for regions containing at least 25 CERES footprints,
where the bias in the linear fit is less than 107%% and the relative STD is smaller than 3%
for SW, and 1% for LW day- and night-time. These linear functions are applied to coincident
data with CERES in along-track mode to derive near-nadir broadband radiances for every
CERES footprint in the region. During this procedure all measurements within a region are
time-matched within 2 minutes in order to ensure consistency of the atmospheric conditions.
With all statistical requirements we have 64,728 regions for SW, 94,788 and 134,657 regions
for LW day- and night-time data, respectively. These regions are distributed over all longitude
and latitude range.

In the along-track scanning mode a footprint is viewed by the CERES at various viewing
zenith angles, #, and by MODIS at an angle close to nadir. First, previously obtained linear
regression in the region is used to calculate the nadir broadband radiance from the MODIS
narrowband radiance over the CERES footprint. Then, CERES and near-nadir broadband
radiances are converted into TOA fluxes using the CERES or ANN-based ADMs according
to Equation 1. We define instantaneous flux consistency as RMS of the difference between
CERES TOA fluxes at large, #, and near-nadir, fyy, viewing zenith angles with condition
that 50° < 0 — Oyn < 60°:

where N is the number of CERES footprints, F;(f) and F;(fyy) are fluxes at large and
near-nadir viewing zenith angles respectively. This procedure is applied for both the original
CERES/ Terra and ANN-based models.



Global average all-sky relative RMS values for all ANN scene types are shown in Table 3 for
SW, LW day- and night-time. Average RMS level for SW and LW reflects the allowed noise
upper-limits in the ANN training sets. The difference between ANN scene types is due to the
difference in complexity of transfer functions and degree of ANN generalization. In average
ANN-derived TOA fluxes are instantaneously consistent within 9% for shortwave, 3.5% and
3% longwave day- and night-time, respectively.

The comparison of instantaneous consistency for the CERES/ Terra and ANN-based ADMs
is shown in Fig. 6b, Fig. 7b and Fig. 8b, where the mean RMS values are plotted versus
sin(latitude). LW day-time (Fig. 7b) and night-time (Fig. 8b) ANN-derived fluxes have
instantaneous consistency that is very close to the CERES/Terra fluxes. Compared with
the original CERES/ Terra TOA fluxes, global average RMS for ANN-based TOA fluxes are
factor 1.33 larger for SW, factor 1.25 for LW night-time, and practically comparable for LW
day-time data.

Using cloud information over CERES footprints inferred from MODIS, Minnis et al. 2003,
we find that instantaneous consistency errors for SW and LW night-time ANN-derived fluxes
are generally larger than for the original CERES/ Terra fluxes for scenes with thin high altitude
cloud layers. As in the case of data with small SZA and large precipitable water, this is, again,
a case where data sampling is poor, and therefore not well-represented in the training sets.

5. Summary and Conclusions

Using artificial neural network (ANN) approach, we developed a complete global set of
angular distribution models (ADMs) for TOA flux retrievals from CERES measurement alone.
Trained on CERES/ Terra SSF dataset, the SW, LW, and WN ANN-based ADMs are built
for ten surface types, and represent five-dimensional continuous functions. Close reproduction
of the original CERES/ Terra ADMs is achieved by using a partially connected feed-forward
error-backpropagation ANN structure in combination with low-noise compact training sets.
These models are applied to CERES/ Terra data with insufficient imager information for scene
identification, and play an important role in regions where the fraction of such data with
insufficient is relatively large: coastal Antarctica, mountainous regions of Asia, equatorial
Africa, sea-ice and fresh snow surfaces.

When compared with the original CERES/ Terra TOA fluxes the ANN-derived mean TOA
fluxes show a very small global deviation for all scene types. Maximum regional mean ANN
flux deviation from the original fluxes is less then 10 Wm~2 for SW, and less than 2 Wm™2
for LW data. The largest difference occurs in polar regions over sea ice and permanent snow
surfaces. When stratified by solar zenith angle and precipitable water, mean SW and LW
TOA fluxes are reproduced to within of 2 Wm 2, except in areas of poorly sampled data
with SZA < 10° and PW > 8 cm. These results confirm that the method allows good neural
network generalization during the training phase. For all ANN scene types, the STD of the
difference between the ANN-derived and CERES/ Terra SSF TOA fluxes are in a very good
agreement with the expected values.



For all surface types, ANN-derived TOA fluxes are instantaneously consistent in VZA to
within 9% for SW, 3.5% and 3% LW day- and night-time, respectively. This is about factor
1.33 and 1.25 larger that of the CERES/ Terra for SW and LW night-time, and practically
comparable for LW day-time. Instantaneous TOA flux consistency of the ANN-based TOA
fluxes are generally larger for poorly sampled scene types, such as high altitude thin cloud
layers.

Further improvement in ANN performance and reduction of ANN-derived TOA flux errors
for poorly sampled data can be achieved by increasing its density in the training sets artificially.
The ANN-based ADMs are accessible interactively at the CERES Inversion Group official
web-site, http://asd-www.larc.nasa.gov/Inversion/adm/.
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TABLE 1. ANN input variables and stratification of the CERES/ Terra SSF data for
building SW, LW day- and night-time training sets. Units of the bin-width, A-Bin, are
Wm~2sr~! for radiance (SWR, LWR), degrees for angles (VZA, SZA, RAZ), and cm for
precipitable water (PW).

Variable | N Bins | A-Bin || Variable | N bins | A-Bin || Variable | N bins | A-Bin
SW SW SW LW LW LW LW LW LW

DAY DAY | DAY || NIGHT | NIGHT | NIGHT
1 VZA 7 10.0 VZA 7 10.0 VZA 7 10.0
2 RAZ 9 20.0 RAZ 6 30.0 RAZ 6 30.0
3| LWR 15 10.0 SWR 20 15.0 SZA 9 10.0
4 SZA 9 10.0 PW 10 1.0 PW 10 1.0
5| SWR 30 10.0 LWR 30 5.0 LWR 40 3.0
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TABLE 2. Definition of ANN scene types using IGBP: Evergreen Forests (EF), Deciduous
Forests (DF), Woody Savannas and Shrublands (WS), Dark Desert (DD), Bright Desert
(BD), Water Bodies (WB), Grasslands (GR), Croplands and Cities (CC), Permanent and

Fresh Snow (SN), Sea Ice (SI). Bias and ST Dy of the relative difference between the

ANN-based and target ADMs after the training for SW, LW day and night.

ANN IGBP Bias SW | ST Dy SW || Bias LW | ST Dy LW || Bias LW | ST Dy LW
Scene | Types (%) (%) Day (%) | Day (%) || Night (%) | Night (%)
EF 1,2 0.11 3.42 0.011 0.98 0.023 1.48
DF 3,4,5 0.15 3.87 0.007 0.81 0.013 1.02
WS 6, 8 0.13 3.57 0.011 0.91 0.028 1.66
DD 7,18 0.11 3.50 0.006 0.72 0.015 1.09
BD 16 0.08 2.97 0.008 0.67 0.017 1.20
WB 17 0.13 4.06 0.010 0.91 0.010 0.93
GR | 9,10, 11 0.12 3.48 0.010 0.90 0.021 1.37
CC |12,13, 14 0.12 3.41 0.009 0.85 0.014 1.15
SN 15, 19 0.12 3.66 0.013 1.02 0.012 1.05
SI 20 0.12 3.83 0.005 0.62 0.006 0.83
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TABLE 3. Mean (bias), STD, and expected minimum ST Dy of the difference between
the ANN-derived and original CERES/ Terra TOA fluxes. The STD and ST Dy are
shown as superscript and subscript to the bias values, respectively. The ANN-derived TOA
flux instantaneous consistency, RMS, for all ANN scene types.

ANN || BIAS 273,,,, | BIAS 575 | BIAS 375, || RMS SW | RMS LW | RMS LW
Type SW (%) LW Day (%) | LW Night (%) (%) Day (%) | Night (%)
EF -0.28 513 -0.13 152 -0.08 199 8.89 4.35 3.71
DF -0.68 298 -0.14 133 -0.21 169 10.14 4.15 3.56
WS -0.33 3% -0.08 {-33 -0.03 535 9.10 4.36 3.75
DD -0.51 278 -0.10 123 -0.38 188 9.22 3.90 2.98
BD -0.12 477 -0.01 997 -0.25 15t 7.18 3.09 2.65
WB 0.02 293 -0.21 120 -0.11 14 9.33 3.68 2.83
GR -0.10 §35 -0.13 1595 -0.24 158 9.70 4.30 3.44
CC -0.15 533 -0.17 155 -0.26 149 9.71 4.54 3.54
SN -0.18 22 -0.68 139 -0.39 199 8.90 3.60 3.22
SI 0.11 38 -0.65 053 -0.70 152 10.84 3.32 3.36
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Figure 1: Fraction of CERES footprints lacking imager information for a reliable scene iden-
tification.
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Figure 2: Layout of the ANN used in this study. Open rectangles show the neurons, which
form two hidden layers, L' and L2, and an output layer, L. The ANN inputs are partially
connected with the first hidden neuron layer, L'. Input normalization process shown with
rectangles containing letter N. The weighted connections between neurons are denoted as
W1, W2 and W3.
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Figure 3: SW ANN training sets: frequency distribution of the training configurations in
relative STD(ADM) and in mean glint angle for a) Water Bodies scene type, ADM noise
increase considerably at small glint angle; and b) Dark Desert surface type. Dashed line
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shows the allowed upper-limit of STD(ADM) = 8.0%.
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Figure 4: SW ANN training for Bright Desert scene type: a) Error index decreases with
training iteration, b) Frequency distribution of the relative difference between ANN-derived,
R4nn, and training set ADM values, Rgpr.
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Figure 5: Regional difference between mean ANN-derived and the original CERES/ Terra SSF
fluxes: a) SW, b) LW day-time, and ¢) LW night-time.
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Figure 6: Validation of the SW ANN-based ADMs: a) Difference between mean SW ANN-
derived and original CERES/ Terra SSF fluxes versus SZA. b) Instantaneous mean SW flux
RMS versus sin(latitude) for ANN-based (solid line) and the original CERES/ Terra SSF
(dashed line) ADMs.

19



)

e 1P a £ 12
z e e ] > 10 [
, (UEOOOEU ]2, |
TR -
1 B 4 =
z C S 6 |- !
Z-2 | = B
- - = Y[ — RMS,,
3 —| 8 2| - RMSy
- 2 [
_4 | | | ‘ | | | ‘ | | | ‘ | | | ‘ | 0 | | | | ‘ | | | | ‘ | L | ‘ | | | |
0 2 4 6 8 1 -05 0 05 1
precipitablewater (€M) sin (latitude)

Figure 7: Validation of the LW day-time ANN-based ADMs: a) Difference between mean LW
day-time ANN-derived and original CERES/ Terra SSF fluxes versus precipitable water. b)
Instantaneous mean LW day-time flux RMS versus sin(latitude) for ANN-based (solid line)
and original CERES/ Terra SSF (dashed line) ADMs.
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Figure 8: Validation of the LW night-time ANN-based ADMs: a) Difference between mean
LW night-time ANN-derived and original CERES/ Terra SSF fluxes versus precipitable water.
b) Instantaneous mean LW night-time flux RMS versus sin(latitude) for ANN-based (solid
line) and original CERES/ Terra SSF (dashed line) ADMs.
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